Adaptive Stochastic Resource Control: A Machine Learning Approach
نویسندگان
چکیده
منابع مشابه
Adaptive Stochastic Resource Control: A Machine Learning Approach
The paper investigates stochastic resource allocation problems with scarce, reusable resources and non-preemtive, time-dependent, interconnected tasks. This approach is a natural generalization of several standard resource management problems, such as scheduling and transportation problems. First, reactive solutions are considered and defined as control policies of suitably reformulated Markov ...
متن کاملStochastic Portfolio Theory: A Machine Learning Approach
In this paper we propose a novel application of Gaussian processes (GPs) to financial asset allocation. Our approach is deeply rooted in Stochastic Portfolio Theory (SPT), a stochastic analysis framework introduced by Robert Fernholz that aims at flexibly analysing the performance of certain investment strategies in stock markets relative to benchmark indices. In particular, SPT has exhibited s...
متن کاملDebt Collection Industry: Machine Learning Approach
Businesses are increasingly interested in how big data, artificial intelligence, machine learning, and predictive analytics can be used to increase revenue, lower costs, and improve their business processes. In this paper, we describe how we have developed a data-driven machine learning method to optimize the collection process for a debt collection agency. Precisely speaking, we create a frame...
متن کاملAdaptive Sampling Based Large-Scale Stochastic Resource Control
We consider closed-loop solutions to stochastic optimization problems of resource allocation type. They concern with the dynamic allocation of reusable resources over time to non-preemtive interconnected tasks with stochastic durations. The aim is to minimize the expected value of a regular performance measure. First, we formulate the problem as a stochastic shortest path problem and argue that...
متن کاملA Machine Learning Approach to Adaptive Covariance Localization
Data assimilation plays a key role in large-scale atmospheric weather forecasting, where the state of the physical system is estimated from model outputs and observations, and is then used as initial condition to produce accurate future forecasts. The Ensemble Kalman Filter (EnKF) provides a practical implementation of the statistical solution of the data assimilation problem and has gained wid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Artificial Intelligence Research
سال: 2008
ISSN: 1076-9757
DOI: 10.1613/jair.2548